

Material for Jet Engine Fan Blades

Ariana Diaz, Marcus Montisano, Iris Renteria, Delphine Tan

Introductions

Iris Rentería Junior Mechanical Engineering

Delphine Tan Senior Mechanical Engineering

Ariana Diaz Junior Mechanical Engineering

Marcus Montisano Senior Mechanical Engineering

Agenda

Material for Jet Engine Fan Blades

- 1. Problem Definition
- 2. Functions, Objectives, Constraints
- 3. Material Indices
- 4. Ashby Plots
- 5. Material Candidates
- 6. Material Selection
- 7. Considerations
- 8. Summary

Materials for Jet Fan Blades

Goal: Select a material for the jet engine fan blades

Function: High speed rotating fan blades that pump air

Assumptions: Model blade as a 24"x 6" x h" rectangular prism

Functions, Objectives, Constraints

Function	Jet fan blades that pump air, pushing jet				
Objective	 Minimize the weight of each blade The blade must not yield due to rotationally imposed stresses Must bear centrifugal loads for at least 10,000 engine flights (high fatigue) Stress intensity factor must be less than the fracture toughness (no fast fracture) Minimize vibrational fatigue effects Minimum operating temperature of 200°F 				
Constraints	 Ideally costs no more than \$2000 h is less than 0.80" 				
Free Variables	 Blade Cross Section Material selection 				

Approach for Selecting Materials

Material Index 1: Temperature

Object: Operating Temperature of the Blade is 200°F

$$T_{operating} = 200^{\circ} F$$

Materials must have a melting temperature above the operating, with a safety factor of 2 to minimize creep effects and enable higher engine performance.

$$\frac{T_{melt}}{2} \ge 200^{\circ}F \longrightarrow T_{melt} \ge 400^{\circ}F \longrightarrow M_1 = T_{melt}$$

 M_1 : Materials must have a melting temperature above 400°F

Material Index 2: Yield Strength

Objects: Blade must not yield due rotational forces

• Yield stress is equal to the force divided by the area

$$\sigma_y = \frac{F}{A}$$

• Force is variable across the blades with the radius $F = ma = \int \rho w h dr(\frac{v^2}{r})$

Solving for specific yield stress:

$$\sigma_y = \frac{\frac{1}{2}\rho w h \omega^2 l^2}{wh} \longrightarrow \frac{\sigma_y}{\rho} \ge \frac{1}{2}\omega^2 l^2 \longrightarrow M_2 = \frac{\sigma_y}{\rho}$$

 M_2 : must have a specific yield strength of 0.0184 MPa/(kg/m³) or greater

Material Index 3: Ultimate Strength

Fatigue failure of a turbine blade

Objective: Blade must endure 10,000 engine flights

 It is assumed that if the loads are kept below half of the ultimate tensile strength of the material

$$\sigma \le \frac{\sigma_{uts}}{2}$$

• Write the stresses in terms of the rotational loads

$$\sigma = rac{1}{2}
ho\omega^2 l^2 \qquad rac{\sigma}{
ho} \geq rac{1}{2}\omega^2 l^2$$

Solving for specific ultimate strength:

$$\frac{\sigma_{uts}}{\rho} \ge \omega^2 l^2 \qquad \qquad M_3 = \frac{\sigma_{uts}}{\rho}$$

 M_3 : Specific Ultimate strength must be at least 0.0368 MPa/(kg/m³)

Objective: Fracture resistance from foreign objects

• A surface crack of 0.02" crack must not propagate under cyclic loads

$$K_{IC} \ge Y \sigma \sqrt{\pi a}$$

• For a surface crack, Y=1.12 and using the same rotational loads

$$K_{IC} \ge 1.12(\frac{1}{2}\omega^2\rho l^2)\sqrt{\pi(0.02")}$$

Solving for specific fracture toughness

$$\frac{K_{IC}}{\rho} \ge 1.12(\frac{1}{2}\omega^2 l^2)\sqrt{\pi(0.02")} \longrightarrow M_4 = \frac{K_{IC}}{\rho}$$

 M_4 : specific fracture toughness must be at least 0.000823 MPa m^{1/2}/(kg/m³)

Material Index 5: Vibrations

Objective : Minimize torsional vibration fatigue

• Shear modulus must be at least 25% of Young's Modulus

$$G \ge 0.25E$$
$$\frac{G}{E} \ge 0.25 \longrightarrow M_5 = \frac{G}{E}$$

Minimize effects of torsional vibration fatigue by keeping M_5 above 0.25

Note: The additional effect of torsional vibration will increase the cyclic stress developed in the turbine, reducing fatigue life. Thus, the blade will likely fail earlier than the predicted 10,000 cycles.

Material Index 6: Moment of Inertia

 $y_{\rm max} = \frac{Fa^2}{6EI}(a - 3l)$

Objective: Minimize I (Moment of Inertia)

• The coefficient of lift can be defined as:

$$C_L = \frac{2F_L}{\rho u^2 S} \qquad \longrightarrow \qquad F_L = \frac{\rho(\omega r)^2 S C_L}{2}$$

- The total lift force due to the distributed load of the fluid on the blade: $F_{Tot} = \int_0^L F_L(r) dr \implies F_{Tot} = \frac{SC_L \rho \omega^2}{2} (\frac{1}{2}L^2)$
- The maximum deflection for a cantilever beam with midspan force: $\delta_{max} = \frac{F_L (0.75L)^2}{6EI} (0.75L - 3L)$
- Solving for moment of inertia:

$$I \ge \frac{F_L(1.266L^3)}{6E\delta_{max}} \longrightarrow I \ge \frac{F_L(1.266)}{6\delta_{max}}L^3(\frac{1}{E}) \longrightarrow M_6 = E$$

Minimize I by maximizing M₆

Material Indices Summary

Index	Associated constraint	Equation	Threshold
M ₁	Minimum operating temperature	T_{melt}	400 °F
M ₂	No yield from rotationally imposed stresses	$\frac{\sigma_y}{ ho}$	0.0184 MPa/(kg/m³)
M ₃	Fatigue	$rac{\sigma_{uts}}{ ho}$	0.0368 MPa/(kg/m³)
M ₄	Fracture resistance	$\frac{K_{IC}}{\rho}$	0.000823 MPa m ^{1/2} /(kg/m ³)
M ₅	Minimize effects of torsional vibration fatigue	$rac{G}{E}$	0.25
M ₆	Beam deflection	E	140 GPa

Began with all Level 3 Aerospace Materials

Eliminated obviously unhelpful materials (only come in powder form, foams, natural materials, wires, fibers)

M₁ Filtering Melting temperature > 400°F

Focus is on upper right corner

M₂ Screening - Yield Strength

Threshold Line at M₂ = 0.0184

M₂ Screening - Yield Strength

Threshold Line at M₂ = 0.0184

M₃ Screening - Tensile Strength

All previous materials were safely above cutoff line at $M_3 = 0.0368$

M₄ Screening - Fracture Toughness

 $\rm M_{4}$ Screening - Fracture Toughness

Threshold Line at $M_a =$ 8.233E-4

Very generous fracture toughness limit, only considers cyclic loading and not impact

M₅ Screening - Shear Modulus for torsional vibrations

M₅ Screening - Shear Modulus for torsional vibrations

Eliminated a few materials

Assuming a solid cross section of maximum allowable thickness, we calculated a minimum Young's Modulus threshold of 140 GPa

Material Properties

Material	Young's Modulus (GPa)	Density (kg/m³)	Yield Strength (GPa)	Fracture Toughness (MPa*m ^{1/2})	
TI-35% SiC (f) (Unidirectional, Longitudinal)	245	3930	1005	33.5	
Beryllium, Grade SR-200, Plate > 6.35 mm Thick	302.5	1850	337.5	12	
NIckel-Mo-Cr Alloy, Hastelloy (UNS N06635)	212	8750	445	312	
Stainless Steel	211	7825	867.5	161.5	
Nickel Chromium Alloy, Inconel X-750	216.5	8250	713.5	110.5	
Nickel-Co-Cr Alloy	220	8250	1040	91.4	
Nickel-Co-Cr Alloy, Nimonic 105	222.5	8000	830	95.75	

Material Performance

Material	Minimum thickness (in)	Weight (kg)	Total Cost (\$)
TI-35% SiC (f) (Unidirectional, Longitudinal)	0.495	4.59	12,857
Beryllium, Grade SR-200, Plate > 6.35 mm Thick	0.461	2.01	2,199
Nickel-Mo-Cr Alloy, Hastelloy (UNS N06635)	0.520	10.73	1,079
Stainless Steel	0.520	9.61	1,020
Nickel Chromium Alloy, Inconel X-750	0.516	10.04	1,174
Nickel-Co-Cr Alloy	0.513	9.99	1,240
Nickel-Co-Cr Alloy, Nimonic 105	0.511	9.65	1,248

Material	Details		
Beryllium, Grade SR-200, Plate > 6.35 mm Thick	Used in aerospace structures, as heat sinks		
Stainless Steel (BS S143)	Blading assemblies in aviation/aerospace industries, turbine engineering		

Selected based on cost, weight, and minimum thickness

All materials have a baseline machining cost of \$960 for a minimum thickness solid part.

If we add a cross section with a 0.1" wall thickness, the additional manufacturing cost is \$910.8

Thus, additional machining costs plus material prices will exceed our budget, and it is our best interest to design solid turbine blades Baseline Machining Cost: \$960

Internal Features Estimate: \$911

Average Material Cost: \$195

╋

Estimated final cost: \$2066

Market Research

- Widely used materials
 - Nickel-based alloys
 - Titanium
 - Aluminum
 - Stainless steel
 - Sometimes CFRP

- Manufacturing
 - Mold Casting:
 - Nickel-based alloys
 - Stainless steel
 - Titanium
 - Aluminum
 - Layup: CFRP

Final Choices

Budget friendly, reliable

Option 1: Stainless Steel (BS S143) Weight: 9.61 kg Total Cost per blade: \$1020 Other Considerations: Easily machinable Sourcing: Widely available

High performance, for a little extra Option 2: Beryllium, Grade SR-200 Weight: 2.01 kg Total Cost per blade: \$2199 Other Considerations: Machinable, very low comparative fracture toughness Sourcing: More difficult to find

Materials Selection Lab #4

Nickel Problem from the Statement

More Calculations

Cross-Section Math

All Screened Material Properties

Material	Young's Modulus (GPa)	Density (kg/m^3)	Yield Strength (GPa)	Shear Modulus (GPa)	Melting Point (°C)	Fracture Toughness (MPa*m ^{1/2})	Specific Young's Modulus (MPa/kg/ m ³))
TI-35% SiC	245	3930	1005	76.5	1645	33.5	62.34
Beryllium,	302.5	1850	337.5	142	1280	12	163.5
Nickel-Mo-Cr Alloy	212	8750	445	80	1360	312	24.23
Stainless Steel	211	7825	867.5	80	1420	161.5	26.96
Inconel X-750	216.5	8250	713.5	83.1	1410	110.5	26.24
Nickel-Co-Cr Alloy	220	8250	1040	85	1345	91.4	26.67
Nickel-Co-Cr Alloy, Nimonic 105	222.5	8000	830	87.5	1300	95.75	27.81