

Material for Jet Engine Fan Blades

Ariana Diaz, Marcus Montisano, Iris Renteria, Delphine Tan

Introductions

Iris Rentería Junior Mechanical Engineering

Delphine Tan Senior Mechanical Engineering

Ariana Diaz Junior Mechanical Engineering

Marcus Montisano Senior Mechanical Engineering

Agenda

Material for Jet Engine Fan Blades

- 1. Problem Definition
- 2. Functions, Objectives, Constraints
- 3. Material Indices
- 4. Ashby Plots
- 5. Material Candidates
- 6. Material Selection
- 7. Considerations
- 8. Summary

Materials for Jet Fan Blades

Goal: Select a material for the jet engine fan blades

Function: High speed rotating fan blades that pump air

Assumptions: Model blade as a 24"x 6" x h" rectangular prism

Functions, Objectives, Constraints

Approach for Selecting Materials

Material Index 1: Temperature

Object: Operating Temperature of the Blade is 200°F

$$
T_{operating} = 200^{\circ} F
$$

Materials must have a melting temperature above the operating, with a safety factor of 2 to minimize creep effects and enable higher engine performance.

$$
\frac{T_{melt}}{2} \ge 200^{\circ}F \quad \longrightarrow T_{melt} \ge 400^{\circ}F \quad \longrightarrow \quad \bigg|M_1 = T_{melt}\bigg|
$$

M1 : Materials must have a melting temperature above 400°F

Material Index 2: Yield Strength

Objects: Blade must not yield due rotational forces

Yield stress is equal to the force divided by the area

$$
\sigma_y = \frac{F}{A}
$$

Force is variable across the blades with the radius $F=ma=\int \rho wh dr(\frac{v^2}{r})$

Solving for specific yield stress:

$$
\sigma_y = \frac{\frac{1}{2}\rho wh\omega^2 l^2}{wh} \longrightarrow \frac{\sigma_y}{\rho} \ge \frac{1}{2}\omega^2 l^2 \longrightarrow \left[M_2 = \frac{\sigma_y}{\rho} \right]
$$

Material Index 3: Ultimate Strength

Fatigue failure of a turbine blade

Objective: Blade must endure 10,000 engine flights

It is assumed that if the loads are kept below half of the ultimate tensile strength of the material

$$
\sigma \leq \frac{\sigma_{uts}}{2}
$$

Write the stresses in terms of the rotational loads

$$
\sigma = \frac{1}{2}\rho\omega^2l^2 \qquad \frac{\sigma}{\rho} \ge \frac{1}{2}\omega^2l^2
$$

Solving for specific ultimate strength:

$$
\frac{\sigma_{uts}}{\rho} \ge \omega^2 l^2 \qquad \qquad M_3 = \frac{\sigma_{uts}}{\rho}
$$

M₃: Specific Ultimate strength must be at least 0.0368 MPa/(kg/m³)

Objective: Fracture resistance from foreign objects

A surface crack of 0.02" crack must not propagate under cyclic loads

$$
K_{IC} \geq Y \sigma \sqrt{\pi a}
$$

For a surface crack, $Y=1.12$ and using the same rotational loads

$$
K_{IC} \ge 1.12(\frac{1}{2}\omega^2 \rho l^2)\sqrt{\pi (0.02")}
$$

Solving for specific fracture toughness

$$
\frac{K_{IC}}{\rho} \ge 1.12(\frac{1}{2}\omega^2 l^2)\sqrt{\pi (0.02")} \longrightarrow M_4 = \frac{K_{IC}}{\rho}
$$

M4 : specific fracture toughness must be at least 0.000823 MPa m1/2/(kg/m3)

Material Index 5: Vibrations

Objective : Minimize torsional vibration fatigue

Shear modulus must be at least 25% of Young's Modulus

$$
G \ge 0.25E
$$

$$
\frac{G}{E} \ge 0.25 \longrightarrow \left[M_5 = \frac{G}{E} \right]
$$

Minimize effects of torsional vibration fatigue by keeping M_E above 0.25

Note: The additional effect of torsional vibration will increase the cyclic stress developed in the turbine, reducing fatigue life. Thus, the blade will likely fail earlier than the predicted 10,000 cycles.

Material Index 6: Moment of Inertia

 $y_{\text{max}} = \frac{Fa^2}{6EI}(a - 3l)$

Objective: Minimize I (Moment of Inertia)

The coefficient of lift can be defined as:

$$
C_L = \frac{2F_L}{\rho u^2 S} \longrightarrow F_L = \frac{\rho(\omega r)^2 S C_L}{2}
$$

● The total lift force due to the distributed load of the fluid on the blade: α .

$$
F_{Tot} = \int_0^L F_L(r) dr \longrightarrow F_{Tot} = \frac{S C_L \rho \omega^2}{2} (\frac{1}{2} L^2)
$$

- The maximum deflection for a cantilever beam with midspan force:
 $\delta_{max} = \frac{F_L(0.75L)^2}{6EI}(0.75L 3L)$
- Solving for moment of inertia:

$$
I \ge \frac{F_L(1.266L^3)}{6E\delta_{max}} \longrightarrow I \ge \frac{F_L(1.266)}{6\delta_{max}}L^3(\frac{1}{E}) \longrightarrow M_6 = E
$$

Minimize I by maximizing M_c

Material Indices Summary

Began with all Level 3 Aerospace Materials

Eliminated obviously unhelpful materials (only come in powder form, foams, natural materials, wires, fibers)

 M_1 Filtering Melting temperature > 400°F

Focus is on upper right corner

M₂ Screening - Yield **Strength**

Threshold Line at $M_2 =$ 0.0184

M₂ Screening - Yield **Strength**

Threshold Line at $M_2 =$ 0.0184

M₃ Screening - Tensile Strength

All previous materials were safely above cutoff line at $M_{3} = 0.0368$

20

M₄ Screening - Fracture **Toughness**

Threshold Line at M_{4} = 8.233E-4

Very generous fracture toughness limit, only considers cyclic loading and not impact

M₅ Screening - Shear Modulus for torsional vibrations

M₅ Screening - Shear Modulus for torsional vibrations

Eliminated a few materials

Assuming a solid cross section of maximum allowable thickness, we calculated a minimum Young's Modulus threshold of 140 GPa

Material Properties

Material Performance

Selected based on cost, weight, and minimum thickness

All materials have a baseline machining cost of \$960 for a minimum thickness solid part.

If we add a cross section with a 0.1" wall thickness, the additional manufacturing cost is \$910.8

Thus, additional machining costs plus material prices will exceed our budget, and it is our best interest to design solid turbine blades

Baseline Machining Cost: \$960

Internal Features Estimate: \$911

Average Material Cost: \$195 +

Estimated final cost: \$2066

Market Research

- Widely used materials
	- Nickel-based alloys
	- Titanium
	- Aluminum
	- Stainless steel
	- Sometimes CFRP

- Manufacturing
	- Mold Casting:
		- Nickel-based alloys
		- Stainless steel
		- **Titanium**
		- Aluminum
	- Layup: CFRP

Final Choices

Option 1: Stainless Steel (BS S143) Weight: 9.61 kg Total Cost per blade: \$1020 Other Considerations: Easily machinable Sourcing: Widely available

Option 2: Beryllium, Grade SR-200 Weight: 2.01 kg Total Cost per blade: \$2199 Other Considerations: Machinable, very low comparative fracture toughness Sourcing: More difficult to find Budget friendly, reliable High performance, for a little *extra*

Materials Selection Lab #4

Nickel Problem from the Statement

More Calculations

Cross-Section Math

All Screened Material Properties

